Behavioural Microsimulation Modelling for Tax Policy Analysis in Australia: Experience and Prospects

John Creedy and Guyonne Kalb
Department of Economics and The Melbourne Institute of Applied Economic and Social Research, The University of Melbourne

Abstract
This paper describes microsimulation modelling in non-technical terms and explains what can be achieved with microsimulation modelling in general, and the Melbourne Institute Tax and Transfer Simulator (MITTS) in particular. The focus is on behavioural microsimulation modelling, which takes individuals' labour supply responses into account when analysing tax and transfer reforms. Microsimulation models are built to replicate closely the considerable degree of heterogeneity observed in the population. Several examples of recent uses of MITTS are given and briefly described. Given the relatively recent development of behavioural microsimulation models, there are several opportunities for further extensions. For example, it would be valuable to allow for the demand side of labour, indicating whether new labour force participants are likely to find work or to allow for life-cycle dynamics, which are important to deal with population-ageing issues and female labour force participation.

1. Introduction
Tax policy questions may relate to specific problems, concerning perhaps the revenue implications of a particular tax, or they may involve an extensive analysis of the cost and redistributive effects of a large number of taxes and transfer payments. While small tax models help to provide useful general lessons and guiding principles for reform, evaluations that can be directly related to practical policy questions and can provide direct inputs into rational policy debate require the construction of large tax microsimulation models.

The aim of this paper is to explain in relatively non-technical terms what can be achieved with behavioural tax microsimulation modelling in general and, more specifically, gives an overview of the Melbourne Institute Tax and Transfer Simulator (MITTS). The paper describes experiences with MITTS, involving several modelling innovations designed to enhance the evaluation of policy reforms, and gives examples of some recent policy simulations. In addition, further potential developments are discussed.

Address for correspondence: Guyonne Kalb, The Melbourne Institute of Applied Economic and Social Research, The University of Melbourne, Victoria 3010 Australia. Email: g.kalb@unimelb.edu.au
We are grateful to two anonymous referees and the editor for suggestions and helpful comments on an earlier version of the paper.
© The Centre for Labour Market Research, 2005.
The majority of tax microsimulation models are non-behavioural or arithmetic. That is, no allowance is made for the possible effects of tax changes on individuals’ consumption plans or labour supplies. It is sometimes said that they provide information about the effects of tax changes on the ‘morning after’ the change. They impute net household incomes for a representative cross-sectional sample of households, for existing and counterfactual tax-benefit regimes. The database on which a model is built gives information about a large number of characteristics of individuals and households. Such information is necessary for imputing taxes, and replicates closely the considerable degree of heterogeneity observed in the population.

Many tax policy changes are designed with the aim of altering the behaviour of individuals.\(^1\) For example, some policies are designed to induce more individuals to participate in paid employment or, for those already working, to increase their hours of work. Even where labour supply is not the main focus of a policy, there may be unintended consequences which affect other outcomes. Measures of the welfare losses, for example resulting from increases in taxes, are overstated by non-behavioural models, which do not allow for substitution away from activities whose relative prices increase. In addition, estimates of the distributional implications of tax changes may be misleading unless behavioural adjustments are modelled. Estimates of tax rates required to achieve specified revenue levels are likely to be understated.

The production of behavioural microsimulation tax models, allowing for labour supply variations, represents a considerable challenge and has involved substantial innovations in labour supply modelling.\(^2\) Such models represent a relatively recent development, made feasible by improvements in computing facilities, and offer interesting challenges and potential for further extensions.

Section 2 provides a general description of a behavioural model. The MITTS model is then described briefly in section 3, where emphasis is placed on giving an informal explanation of the way in which labour supply variations are modelled. Although microsimulation models deal with a wide range of types of individual and household, it is useful to compare some aggregated measures regarding labour supply variations with those available from independent studies. Such comparisons are made in section 4. A detailed description of one hypothetical tax reform analysis and summaries of a range of tax reform analyses, which have been carried out using MITTS, are given in section 5. Some recent and planned extensions to MITTS are discussed in section 6.

\(^1\) In the context of consumption, environmental taxes such as carbon taxes, or sumptuary taxes, are used to reduce the demand for harmful goods.

\(^2\) On labour supply modelling in the context of tax simulation models, see, for example, Apps and Savage (1989), Banks, Blundell and Lewbell (1996), Blundell et al. (1986), Creedy and Kalb (2005a), Duncan (1993), Duncan and Giles (1996) and Moffitt (2000). On behavioural responses in EUROMOD, a European microsimulation model including tax and transfer systems of a number of European countries, see Klevmarken (1997).
All models have their limitations though some are less transparent than others. Tax models are supply-side partial equilibrium models. Behavioural components concentrate on examining the effects of changes in the tax structure on variations in the hours of work that individuals wish to supply. No allowance is made for the demand for labour. Hence, in reality, individuals may not be able to work their desired number of hours. In partial equilibrium tax models, changes in the tax and transfer system have no effect on individuals’ wage rates. Microsimulation models also typically provide a static overview of one point in time and do not allow for life cycle dynamics. A challenging question is how to incorporate dynamic responses to policy changes. Decisions on labour force participation when only short-term implications are taken into account may differ from those taken with a longer-term vision in mind. Section 7 discusses some of these issues and possibilities for potential developments which can be carried out in partnership with a microsimulation model. Some conclusions are provided in section 8.

2. Behavioural Microsimulation

This section describes the basic elements of a behavioural microsimulation model designed to provide ex ante evaluations of the effects of a tax policy change. An estimated model is required of individual preferences for net income and labour supply (or equivalently, non-work time), with which individuals’ labour supply under a given set of economic circumstances may be simulated. In addition, a mechanism is required for allocating to each individual a preferred supply of hours in the face of any tax-benefit system, using the estimated labour supply model. Analysing simulated changes in this allocation of labour supply, between some base tax system and a counterfactual regime, forms the essence of behavioural microsimulation.

The Tax and Transfer System

Detailed knowledge of tax and social security systems is required to build a microsimulation model. Taxes and benefits sometimes involve several government departments and their full details are rarely codified in accessible forms. Actual tax and transfer systems are typically extremely complex and contain a large number of taxes and benefits which, being designed and administered by different government departments, are usually difficult to integrate fully. The complexity increases where several means-tested benefits are available, because of the existence of numerous eligibility requirements. It is only when detailed information about individuals is available that it becomes possible to include the complexities of actual tax and transfer systems in a simulation model.

However, it is unlikely that household surveys contain sufficient information to replicate realistic tax systems fully. In some cases, for example where asset values are required in the administration of means tests, it may be necessary to impute values, although imputations may not always be possible. Furthermore, regulations regarding the administration of taxes and transfers often leave room for some flexibility in interpretation. In particular, the administration of means tests or other benefits may allow
a degree of discretion to be exercised by benefit officers who deal directly with claimants. Changes in the interpretation of (possibly ambiguous) rules, or the degree to which some rules are fully enforced, can take place over time. Furthermore, there may be changes in people’s awareness of the benefits available, and the eligibility rules, thereby affecting the degree of take-up. In view of these limitations, even large-scale models may not be able to replicate actual systems entirely.

A Typical Behavioural Model

The existing behavioural microsimulation models are restricted in the types of behaviour that are endogenous. At most, individuals’ labour supplies and household demands are modelled. Variables such as household formation, marriage and births, along with retirement, labour training and higher education decisions, are considered to be exogenous and independent of the tax changes examined. Independence between commodities and leisure is also assumed. Typically, labour supply in just one job is examined, so that the possibility of working additional hours at a different wage rate is ignored. Indeed, the wage rate is typically calculated by dividing total earnings by the total number of reported hours worked.

A component that evaluates the net income corresponding to any given number of hours worked by each individual is a fundamental component of a behavioural model. This produces, for each individual, the budget constraint relating net income to hours worked. The behavioural part of the model can then evaluate which part of each individual’s constraint is optimal. It might be suggested that this component is in effect an associated non-behavioural model which can calculate the net income associated with any gross income level. However, an existing non-behavioural model cannot easily be augmented by a behavioural component. The complex architecture of microsimulation models requires the kind of integration that is best achieved by simultaneously planning and producing all the components.

Behavioural microsimulation models have, to some extent, a lower degree of population heterogeneity than non-behavioural models. This is because econometric estimation of the important relationships must involve the use of a limited range of categories. For example, in estimating labour supply behaviour, individuals may be divided into groups such as couples, single males and single females, and single-parent households. The number of groups is limited by the sample size, but the relevant functions are allowed to depend on many variables, such as age, location, occupation and education level. In addition, individual-specific variability may be re-introduced to ensure that the optimum labour supply in the face of current taxes actually corresponds, for each individual, to the level that is observed in the current period.

3 We are not aware of microsimulation models allowing for consumption as well as leisure demands. Concentration on labour supply implies a two-stage procedure in which a decision is made regarding labour supply (and hence income), and then the allocation of the resulting net income over commodities is made.

4 However, it is not impossible as shown by the recent addition of a behavioural model to the New Zealand Treasury arithmetic microsimulation model with the required information being passed between the two components. This behavioural model is based on MITTS; see Buddelmeyer, Cai and Kalb (2005).
In addition, some households may be fixed at their observed labour supply in the base sample if, following econometric estimation, individuals in the household do not conform to the assumptions of the underlying economic model. For example, implied indifference curves must display decreasing marginal rates of substitution over the relevant range. Problems with the assumptions of the economic model could be reflected by a difficulty of ensuring for each individual that the optimal labour supply under the base tax and transfer system is equal to observed labour supply.5

A fundamental issue concerns the choice between continuous and discrete hours labour supply estimation and simulation. Earlier studies of labour supply used continuous hours models, involving the estimation of labour supply functions. Several continuous hours modelling approaches have been adopted.6 Often a reasonably flexible labour supply function (relating hours worked to net wage rates, non-wage incomes and a range of individual characteristics) is estimated, and then the utility function is found by appropriate integration methods.7 Alternatively, a supply function is derived from either a direct or (more commonly given the greater flexibility allowed) an indirect utility function. However, considerable problems arise due to the fact that net wages and hours are jointly determined, and problems exist concerning the determination of virtual non-wage incomes for each linear segment. Indeed, empirical continuous hours models have found it extremely difficult to capture the complexities arising from supply behaviour under piece-wise linear constraints.

This contrasts with discrete hours estimation and microsimulation, where net incomes, before and after a policy reform, are required only for a finite set of hours points. The discrete hours approach has substantial advantages from the point of view of estimation, since it allows for the complexity of the tax and transfer system and avoids the problems with endogeneity between the net wage and hours worked, which are present when a standard labour supply function is estimated. Estimation involves direct utility functions, which may depend on many individual characteristics. The determination of optimal labour supply is easier, since utility at each of a limited number of hours levels can readily be obtained and compared. The use of direct utility functions also means that integration from estimated supply functions is avoided in simulation. In addition, modelling the move in and out of the labour market is more straightforward in the discrete than in the continuous model; for a detailed comparison between continuous and discrete hours approaches, see Creedy and Duncan (2002).

5 This issue is discussed in section 3 below in terms of a ‘calibration’ process.
6 A first generation of labour supply models linearised the budget constraint by taking the average net wage rate or the marginal wage rate in the observed hours. This results in a simple regression model if an appropriate utility function is chosen. This type of model is of limited use when interest is in policy analysis related to the tax and benefit system, where realistic budget constraints are typically nonlinear. A second generation of models examines the full budget constraint when searching for optimal labour supply, allowing for any nonlinearities and nonconvexities.
7 A requirement to use this approach is that it must be possible to recover the indirect utility function by integration; on the integrability condition in labour supply models, see, for example, Sterri (1986).
Labour Force Participation
A major policy question relates to the nature of tax and transfer changes designed to encourage more people to participate in the labour market, and is therefore likely to provide a focus for behavioural microsimulation studies. However, for several reasons, this is also precisely the area that raises the greatest difficulty for modellers. First, there is less information about non-participants in survey data. For example, it is necessary to impute a wage rate for non-workers, using estimated wage equations and allowing for selectivity issues. In addition, variables such as industry or occupation, which are often important in wage equations, are not available for non-workers. A second problem is that there are fixed costs associated with working, irrespective of the number of hours worked. These are usually difficult to estimate in view of data limitations. Finally, labour supply models typically treat non-participation as a voluntary decision, giving rise to a corner solution. However, demand-side factors may be important and there may be a discouraged worker effect of unemployment, which is difficult to model.

3. The MITTS Model
This section describes the Melbourne Institute Tax and Transfer Simulator (MITTS), a behavioural microsimulation model of direct tax and transfers in Australia. Emphasis is given to the approach used to model labour supply.

The Data
Data requirements raise special problems for modellers in Australia. The two large-scale household surveys that are potentially useful are the Household Expenditure Survey (HES) and the Survey of Income and Housing Costs (SIHC). The former does not contain sufficient information about hours worked by individuals while the latter does not contain information about expenditure patterns. The SIHC is a representative sample of the Australian population, containing detailed information on labour supply and income from different sources, in addition to a variety of characteristics of individuals and households. The measurement of income in the HES is known to be unreliable, so that in developing models for the analysis of direct taxes and transfer payments, it is not surprising that reliance has been placed on SIHC. This means that Australian direct tax models cannot also include indirect tax models. In the present version of MITTS, SIHC data from 1994/1995, 1995/1996, 1996/1997, 1997/1998, 1999/2000 and 2000/2001 can be used. The econometric estimates of preferences underlying the behavioural responses are based on data observed between 1994 and 1998. All results are aggregated to population levels using the household weights provided with SIHC.11

8 For full details, see Creedy et al. (2002; 2004).
9 Indirect tax models for Australia include the Demand And Welfare Effects Simulator (DAWES) developed in Creedy (1999).
10 Details of the current wage and labour supply parameters used in MITTS can be found in Kalb and Scutella (2002) and Kalb (2002).
11 Data from the Household, Income and Labour Dynamics Australia (HILDA) Survey have been transformed so they could be used as the base data for MITTS, as described by Kalb, Cai and Vu (2004). However, a disadvantage of using the HILDA data is that it is not straightforward to aggregate results up to the population level.
The Calculation of Net Incomes

In MITTS, the arithmetic tax and benefit modelling component is called MITTS-A. This component provides, using the wage rate of each individual, the information needed for the construction of the budget constraints that are crucial for the analysis of behavioural responses to tax changes. The Tax System component of MITTS contains the procedures for applying each type of tax and benefit. Each tax structure has a data file containing the required tax and benefit rates, benefit levels and income thresholds used in means testing. All major social security payments and income taxes are included. Pre-reform net incomes at the alternative hours levels are based on the calculation of entitlements, not the actual receipt. Hence, in the calculation of net income it is assumed that take-up rates are 100 per cent, although a minor modification is mentioned in section 6 (p. 98).^12^ Changes to the tax and benefit structure, including the introduction of additional taxes, can be modelled by editing the programmes in this component. MITTS stores several previous Australian tax and transfer systems which can be used as base systems for the analysis of policy changes. Alternatively, it is often possible to generate a new tax system by introducing various types of policy change interactively by making use of the ‘front end’ menus. This enables a wide range of new tax structures to be generated without the need for additional programming.

The Behavioural Component MITTS-B

The behavioural component of MITTS examines the potential, or ex ante, effects of a specified tax reform, allowing individuals to adjust their labour supply behaviour where appropriate. A discrete-hours modelling approach is used, in which utility-maximising individuals choose from a relatively small number of hours levels, rather than being able to vary hours worked continuously. It is assumed that the same set of hours is available to each individual within any demographic group. MITTS typically uses 11 hours choices for singles, married women and sole parents, and 6 hours choices for married men (who are much less likely to work low part-time hours). One advantage of the discrete approach is that it is perhaps more realistic, in that typically only a finite number of part-time or full-time working options are available. Another advantage is that it also substantially simplifies the nature of the budget set faced by each individual. In the continuous hours context the analysis of choices under piecewise-linear budget lines must deal with the complexities arising from budget sets displaying convex and non-convex ranges, and multiple local equilibria.^13^ In practice, the evaluation of the complete range of each individual’s unique budget set is cumbersome, given the complexity of most tax and transfer systems.^14^ With discrete hours models it is simply a question of evaluating utility at a small number of points, none of which represents a standard tangency solution.

^12^ Experiments using simple take-up rules did not significantly improve the MITTS estimates of aggregate expenditure on a wide range of benefits.

^13^ Simulation requires either a search over all segments and corners of each individual’s constraint, or the use of an algorithm such as that described by Creedy and Duncan (2002).

^14^ This is further complicated in the case of couples and joint utility maximisation, where the budget constraint is three-dimensional.
The following two subsubsections describe the estimation of the parameters of a utility function and the simulation process.

Utility Functions

The advantages of discrete hours modelling are perhaps strongest in the context of the empirical estimation of individuals’ preference functions. Consider an individual with a set of measured characteristics, X, who maximises utility by selecting the number of hours worked, h, subject to the constraint that a discrete number of hours levels, h_i ($i = 1,...,n$) are available. Utility, as determined by leisure and net income, is increasing in both arguments and is bounded by time and budget constraints. That is, the amount of leisure per week cannot be more than the total amount of time available per week minus the hours of work.15 Total weekly income is restricted by the available amount of nonlabour and labour income. The utility associated with each hours level is denoted U_i and is a function of ‘measured’ utility $U(h_i | X)$ plus an unobserved ‘error term’, v_i, so that:16

$$U_i = U(h_i | X) + v_i = U_i + v_i$$

(1)

The term v_i arises from factors such as optimisation errors, measurement errors concerning the variables in X, or the existence of unobserved preference characteristics. Any observation on h is associated with a set of possible ‘draws’ of the n random variables v_i from their respective distributions. Within this framework, there exists a probability distribution, $p(h = h_i) = p_i$, for $i = 1,...,n$, over available hours levels, which is influenced by the properties of the v_i.

A common assumption is that the distribution of v is described by the ‘extreme value’ distribution with density function $f(v) = e^{-e^{-v}}$. The choice of this thin-tailed distribution has the obvious advantage that no further parameters need to be estimated, and it is highly tractable. It gives rise to the well-known multinomial logit model, such that the probability distribution for the discrete hours of work is defined by:

$$p_i = \frac{e^{U_i}}{\sum_{j=1}^{n} e^{U_j}}$$

(2)

This result provides the basis for the formation of the Likelihood Function used in estimation; for a detailed derivation, see Creedy and Kalb (2005a).

The MITTS model is based on estimates of the quadratic utility function, which can be written as:

$$U = \beta_y y + \beta_h h + \alpha_y y^2 + \alpha_h h^2 + \alpha_y y h$$

(3)

15 Most models implicitly allow for home production by assuming that leisure includes home production time. Few articles explicitly allow for home production given the measurement problems.

16 Although utility is considered to be a function of net income and hours worked, it is not necessary here to refer to net income, since this is determined directly from the associated hours level and the wage and other characteristics of the individual.
Where the two arguments in the utility function are \(y \) for net income and \(h \) for hours of work (as the complement of leisure time). The \(\beta \)s and \(\alpha \)s are preference parameters which need to be estimated. The specification in net income and hours of work allows for diminishing returns through the quadratic terms \(\alpha_y \) and \(\alpha_h \). Thus, if \(\alpha_y \) is negative the marginal utility of income decreases with the amount of income. Furthermore, the cross-product term allows for complementarity or substitutability. For example, the value of income may decrease if less leisure time is available, that is extra income may be appreciated less if there is no time for consumption.

The quadratic is extended to allow for households consisting of couples, where both partners simultaneously determine labour supply, by assuming that the couple maximises one utility function; this is a reasonable assumption for households where the members pool their incomes. The joint labour supply of couples is estimated simultaneously, unlike a common approach in which female labour supply is estimated with the spouse’s labour supply taken as exogenous. The quadratic utility function for a couple can be written as:

\[
U = \beta_{yy}y + \beta_{yh}y + \beta_{hh}h + \alpha_{yy}y^2 + \alpha_{yy}h^2 + \alpha_{yh}y + \alpha_{hh}h + \alpha_{yhm}y + \alpha_{ymh}h
\]

where the index \(m \) denotes hours and parameters of the male and the index \(w \) denotes hours and parameters of the female, and \(y \) represents joint net household income. The parameter \(\alpha_{ym} \) indicates whether the male’s and female’s labour supply are complements or substitutes.

The preference parameters of the utility functions in MITTS are also allowed to depend on a range of characteristics, as follows. For simplicity, consider the linear utility function:

\[
U = \beta_hh + \beta_yy \tag{5}
\]

Characteristics such as education, number and age of children or an individual’s own age are likely to influence the preference for work and income. Including these characteristics in the preference for work parameter, the utility function is:

\[
U = \left(\beta_{h1} + \beta_{h2}\text{age} + \beta_{h3}d \right) h + \beta_yy \tag{6}
\]

where, say, \(d = 1 \) if the age of the youngest child is 0 to 4, and \(d = 0 \) otherwise. In this case, two extra parameters for the preference for work are included. This approach can help to explain differences in behaviour between individuals with similar wages but different personal characteristics. MITTS also allows for fixed costs of employment, \(\gamma \), which are deducted from net income in the utility function, replacing the last term \(\beta_yy \) with \(\beta_y(y - \gamma) \). These fixed costs may represent actual financial costs, such as childcare costs or the costs of special clothing, but they also include non-pecuniary costs, such as an implicit penalty for wanting to work part-time hours, which are often not readily available.

\[\text{17 This approach does not incorporate unobserved heterogeneity of individuals because allowance is made only for the measured characteristics. This can be overcome by adding unobserved heterogeneity to the preference parameters.}\]
In MITTS, separate estimation has been carried out for four demographic groups, which include married or partnered men and women, single men and women, and sole parents; see Kalb (2002). Different sets of discrete hours points are used for each demographic group. For those individuals in the data set who are not working, and who therefore do not report a wage rate, an imputed wage is obtained. This imputed wage is based on estimated wage functions, which allow for possible selectivity bias, by first estimating probit equations for labour market participation, as described in Kalb and Scutella (2002, 2004).

Using Calibration in Simulation
Simulation is essentially probabilistic because, as explained in the previous subsubsection, utility at each discrete hours level is the sum of a deterministic component and a random component. Hence, MITTS does not identify a particular level of hours worked for each individual after the policy change, but generates a probability distribution over the discrete hours levels used. However, instead of using the explicit form of the distribution in equation (2), a process of ‘calibration’ is used in which individuals are placed at their observed discretised hours level (by ensuring that this is the optimal choice given a draw from the error term). Using successful draws, a post-reform (conditional) probability distribution of hours supplied is generated numerically.18

A behavioural simulation for each individual begins by setting reported hours equal to the nearest discrete hours level. Then, the deterministic component of utility is calculated given the parameter estimates of the quadratic preference function, which vary according to a range of characteristics. This is followed by a set of random draws taken from the distribution of the error term for each hours level (the extreme value distribution given in the previous subsubsection) to determine the random component of utility. The utility-maximising hours level is found by adding the random to the deterministic component of utility for each discrete hours level. This set of draws is rejected if it results in an optimal hours level that differs from the discretised value observed. A user-specified total number of ‘successful draws’ are produced, that is, drawings which generate the observed hours as the optimal value under the base system for the individual. This process is described as ‘calibration’.

For the post-reform analysis, the new net incomes cause the deterministic component of utility at each hours level to change, so using the set of successful draws from the error term obtained at the calibration stage, a new set of optimal hours of work is produced. This gives rise to a probability distribution over the set of discrete hours for each individual under the new tax and transfer structure. For example, in computing transition matrices showing probabilities of movement between hours levels, the labour supply of each individual before the policy change is fixed at the discretised value, and a number of transitions are produced for each individual, equal to the number of successful draws specified. The use of such a probabilistic approach means that the run-time is substantially longer than that of the arithmetic model, MITTS-A.

18 This simulation method was proposed by Duncan and Weeks (1998).
When examining average hours, the labour supply after the change for each individual is based on the average value over the successful draws, for which the error term leads to the correct predicted hours before the change. This is equivalent to calculating the expected hours of labour supply after the change, conditional on starting from the observed hours before the change. In computing the tax and revenue levels, an expected value is also obtained after the policy change. That is, the tax and revenue at each of the labour supply points are computed for each individual, and the average of these is taken, using the computed probability distribution of hours worked.

In some cases, the required number of successful random draws producing observed hours as the optimal hours cannot be generated from the model within a reasonable number of total drawings. The number of sets of random variables tried per draw, like the number of successful draws required, is specified by the user. If after the total number of tries from the error term distribution, the model fails to predict the observed labour supply for a draw, the individual is fixed at the observed discretised labour supply point for that draw. In a few extreme cases, labour supply is fixed for all draws of an individual. In addition, some individuals are fixed at their observed discretised labour supply if their imputed wage or their observed wage (obtained by dividing total earnings by the number of hours worked) is unrealistic. Furthermore, some individuals such as the self-employed, the disabled, students and those over 65 also have their labour supply fixed at their observed discretised hours. Estimating labour supply responses for these groups would require separately estimated labour supply models for each of the groups, taking into account the specific issues that each of them face. The issues of importance differ considerably between the groups, for example, access to superannuation for those over 65 versus the accumulation of human capital for students.

4. Labour Supply Elasticities Implicit in MITTS

In constructing any microsimulation model it is important to ensure that, using the base system, it can generate revenue and expenditure totals for various categories that are close to independently produced aggregates, for example, from administrative data. For a behavioural model, it is also useful to see how summary information about labour supply behaviour compares with results from other studies. Such comparisons are examined in this section.

It is common in studies of labour supply to provide wage elasticities for various groups, often computed at average values of wages. However, the discrete hours labour supply model, used in MITTS simulations of behavioural responses to policy changes, does not provide straightforward wage elasticities with regard to labour supply. Indeed, for any individual, there are large variations in the elasticity over the range of hours available. However, elasticities can be calculated by comparing the expected labour supply for an individual after a one-percent wage increase with the expected labour supply under the original wage. The resulting percentage change in labour supply can be regarded as a form of wage elasticity. By doing
this for each individual in the sample, the average elasticity across the sample (or population when making use of the weights) can be computed.29

Table 1 presents uncompensated wage elasticities for those in the population that are allowed to change labour supply in MITTS. For self-employed, full-time students, disabled individuals and people over 65 this elasticity is assumed to be zero. In addition to using predicted labour supply alone, calibration can be used to calculate the elasticity starting from the observed labour supply for those already in work. For non-workers, the elasticity cannot be computed because a percentage change starting from zero hours is not defined. The two final columns in table 1 present the predicted participation rate changes resulting from a one-percent wage increase.

The range of elasticities published in the literature is wide, with large differences between studies using different data and approaches.20 The implicit labour supply elasticities in MITTS are similar to those generally found within the international literature. The results for married and single men and women are well within the range of results usually found.

The elasticity for lone parents is often found to be larger than for other groups and this is also found in MITTS. The elasticity implicit in MITTS is at the higher end of this range internationally, although other evidence of a high labour supply responsiveness for lone parents in Australia has been found by Duncan and Harris (2002), Doiron (2004) and Murray (1996), depending on the specification.

Table 1 Average Wage Elasticities by Demographic Groupa

<table>
<thead>
<tr>
<th>Derived from Expected Labour Supply</th>
<th>Using Calibrated Labour Supply (for positive hours only)</th>
<th>Expected Labour Supply (in percentage points)</th>
<th>Calibrated Labour Supply (in percentage points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Married men</td>
<td>0.25</td>
<td>0.02</td>
<td>0.14</td>
</tr>
<tr>
<td>Married women</td>
<td>0.54</td>
<td>0.68</td>
<td>0.19</td>
</tr>
<tr>
<td>Single men</td>
<td>0.28</td>
<td>0.03</td>
<td>0.18</td>
</tr>
<tr>
<td>Single women</td>
<td>0.34</td>
<td>0.11</td>
<td>0.18</td>
</tr>
<tr>
<td>Lone parents</td>
<td>1.58</td>
<td>1.38</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Note a) Excluding people over 65, disabled individuals, full-time students and the self-employed, for whom labour supply is not simulated in MITTS.

Doiron (2004) evaluated a policy reform affecting lone parents in the late 1980s, and found large labour supply effects. Doiron compared the effect obtained through the natural experiment approach with predicted effects of policy changes from the MITTS model, as found in Duncan and Harris (2002) or Creedy, Kalb and Kew (2003). Based on the results from her

29 As the concepts are not the same, it cannot be expected that the same values will be obtained, but comparisons of orders of magnitude are useful.
20 See for example, overviews given by Killingsworth (1983), Killingsworth and Heckman (1986), Pencavel (1986) or more recently by Blundell and MaCurdy (1999) or Hotz and Scholz (2003).
evaluation, Doiron argued that observed shifts in labour supply of lone parents can equal or even surpass the predictions based on behavioural microsimulation.

These results suggest that lone parents’ labour supply elasticities may be substantial. This is perhaps not surprising, given the low participation rate of lone parents and the tendency to work low part-time hours. An increase in labour supply by one hour is a larger percentage increase compared with the same increase for a married man. For the other demographic groups, elasticities amongst those working few hours are also generally higher than for those (in the same group) working higher hours.\(^{21}\)

Another way of validating results is by comparing the predicted effects of a policy change obtained through a simulation with the estimated effects of the policy change after it has been introduced. The problem with this approach is that it is often difficult to find policy changes that can be evaluated accurately. It can be difficult to find a control group with which to compare a treatment group (those affected by the policy change).

Blundell et al. (2004) evaluated a range of labour market reforms in the UK by a difference-in-difference approach at the same time as simulating the effects of these reforms. They found similar results for sole parents and married women, but for married men the estimated effects were opposite. They suggested that this could be due to a number of reasons related to the analyses, such as differences in sample selection rules, not accounting for other changes that occurred at the same time as the reforms or not accounting for general equilibrium effects changing the distribution of wages. It has been difficult to find policy changes in Australia that could be used to test MITTS in a similar way.

5. Examples of the Use of MITTS

This section describes a variety of examples where MITTS has played a major role in the analysis. The aim is to provide a broad overview of the types of application in which behavioural microsimulation modelling has been useful. The first subsection discusses hypothetical policy changes, while the second subsection examines policy reforms that have actually been carried out or have been proposed in policy debates.

Hypothetical Policy Changes
This subsection provides brief descriptions of several hypothetical policy changes which have been examined using MITTS. The first subsubsection provides more detail, in order to provide a flavour of the labour supply results which can be obtained.

A Reduction in Taper Rates
The first full-scale application of MITTS involved a hypothetical policy change reducing the benefit taper or abatement rates in the 1998 tax structure.

\(^{21}\) The lone parent group is the smallest demographic group in the population. Thus, a change in their labour supply responsiveness would have a relatively small effect on the overall result.
to 30 per cent. All taper rates of 50 per cent and 70 per cent are reduced to 30 per cent, while leaving all basic benefit levels unchanged. The effect on labour supply is equivocal because it does not automatically mean a reduction in effective marginal tax rates for all individuals. This is an inevitable consequence of flattening the marginal rate structure while keeping basic benefit levels unchanged.

A summary of the labour supply effects is given in table 2 for five demographic groups. After the reform, more sole parents are expected to participate in the labour market since few sole parents move from work to non-participation, whereas a substantial proportion moves into work from non-participation. The net effect is more than 8 per cent. However, there is a relatively small negative effect for a subgroup caused by the 1.8 per cent of sole parents who decrease their labour supply, which is partly counteracted by the 1.3 per cent of sole parents who increase their working hours after the reform. Nevertheless, the resulting average weekly hours are increased by nearly 3 hours showing that the overall effect is positive.

Table 2 Simulated Percentage Responses of Labour Supply

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wage and salary workers (base)</td>
<td>56.93</td>
<td>40.63</td>
<td>52.29</td>
<td>43.56</td>
<td>41.28</td>
</tr>
<tr>
<td>Wage and salary workers (post-reform)</td>
<td>57.49</td>
<td>40.24</td>
<td>52.55</td>
<td>43.44</td>
<td>49.54</td>
</tr>
<tr>
<td>Non-work to work</td>
<td>1.29</td>
<td>1.72</td>
<td>0.33</td>
<td>0.07</td>
<td>8.30</td>
</tr>
<tr>
<td>Work to non-work</td>
<td>0.73</td>
<td>2.10</td>
<td>0.06</td>
<td>0.18</td>
<td>0.03</td>
</tr>
<tr>
<td>Workers working more</td>
<td>0.08</td>
<td>0.37</td>
<td>1.07</td>
<td>0.42</td>
<td>1.29</td>
</tr>
<tr>
<td>Workers working less</td>
<td>2.60</td>
<td>1.43</td>
<td>0.01</td>
<td>0.44</td>
<td>1.81</td>
</tr>
<tr>
<td>Average hours change</td>
<td>-0.37</td>
<td>-0.49</td>
<td>0.32</td>
<td>-0.10</td>
<td>2.88</td>
</tr>
</tbody>
</table>

Sole parents are predicted to have a larger increase in the probability of working as a result of reduced taper rates than other groups. This sensitivity to work incentives is found in several other studies, such as Blundell et al. (2000) and Blundell and Hoynes (2001). Families with more children seem also more likely to participate in the labour market after the reform.

An example of a transition matrix, produced following the method described in section 3 (pp. 82-83), is shown in table 3. This is for sole parents, who can be seen to experience both increases and decreases in labour supply as a result of the change. Compared with singles and couples (not shown here), sole parents are more likely to change labour supply, particularly at the lower and upper end of the hours range. Sole parents working fewer than 25 hours seem most likely to increase their hours whereas sole parents working 35 hours or over are more likely to reduce their hours.

22 For further details on the effects and results of this policy reform, see Creedy, Kalb and Kew (2003). Duncan and Harris (2002) examined a reduction in taper rate and some other changes, for sole parents only.

23 The exception is the withdrawal rate on parental income for people receiving Youth Allowance or AUSTUDY, which remains at 25 per cent.
Table 3 Labour Supply Transition Table for Sole Parents

<table>
<thead>
<tr>
<th>Hours</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>85.9</td>
<td>0.0</td>
<td>0.3</td>
<td>0.8</td>
<td>1.0</td>
<td>1.9</td>
<td>1.8</td>
<td>1.7</td>
<td>2.1</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>89.2</td>
<td>0.3</td>
<td>0.4</td>
<td>1.0</td>
<td>0.7</td>
<td>1.7</td>
<td>1.9</td>
<td>1.6</td>
<td>2.3</td>
<td>0.8</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
<td>-</td>
<td>86.3</td>
<td>0.6</td>
<td>0.5</td>
<td>1.4</td>
<td>1.5</td>
<td>2.7</td>
<td>2.1</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>91.7</td>
<td>0.3</td>
<td>0.7</td>
<td>1.4</td>
<td>1.1</td>
<td>1.7</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>95.0</td>
<td>0.2</td>
<td>1.1</td>
<td>0.9</td>
<td>0.8</td>
<td>1.3</td>
<td>0.7</td>
</tr>
<tr>
<td>25</td>
<td>0.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>97.8</td>
<td>0.0</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.5</td>
<td>1.1</td>
<td>95.2</td>
<td>0.2</td>
<td>0.7</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>35</td>
<td>-</td>
<td>0.2</td>
<td>0.3</td>
<td>0.7</td>
<td>1.0</td>
<td>1.6</td>
<td>0.5</td>
<td>94.7</td>
<td>0.2</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>40</td>
<td>0.2</td>
<td>0.3</td>
<td>0.6</td>
<td>1.6</td>
<td>1.7</td>
<td>2.5</td>
<td>1.7</td>
<td>0.3</td>
<td>90.8</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>45</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>1.0</td>
<td>1.9</td>
<td>1.8</td>
<td>2.0</td>
<td>1.9</td>
<td>1.1</td>
<td>87.9</td>
<td>1.3</td>
</tr>
<tr>
<td>50</td>
<td>0.1</td>
<td>0.3</td>
<td>0.4</td>
<td>0.8</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
<td>0.9</td>
<td>0.4</td>
<td>92.5</td>
</tr>
<tr>
<td>Total</td>
<td>50.46</td>
<td>2.69</td>
<td>2.22</td>
<td>3.33</td>
<td>4.64</td>
<td>5.21</td>
<td>4.71</td>
<td>5.07</td>
<td>12.67</td>
<td>2.48</td>
<td>6.51</td>
</tr>
</tbody>
</table>

Note: (a) Weighted number of observations on which this table is based is 502,963.

The labour supply responses affect the expected change in expenditure and revenue after the reform. Table 4 presents the expected changes in expenditure and revenue with and without allowing for labour supply changes for the four demographic groups.\(^{24}\) Table 4 shows that the net expenditure by the government on couple families and single women is higher if labour supply responses are taken into account, whereas the net expenditure is lower for single men and sole parents. The cost for sole parents resulting from this policy change is expected to be reduced substantially when potential labour supply responses are taken into account.

Table 4 Tax and Transfer Costs: With and Without Labour Supply Responses

<table>
<thead>
<tr>
<th></th>
<th>Pre-Reform</th>
<th>Labour Supply May Change</th>
<th>Fixed Labour Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abs. Value (in million $)</td>
<td>Abs. Value (in million $)</td>
<td>per cent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Abs. Value (in million $)</td>
</tr>
<tr>
<td>Couples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Revenue</td>
<td>43401.1</td>
<td>-149.1</td>
<td>-0.3</td>
</tr>
<tr>
<td>Total Expenditure</td>
<td>24697.3</td>
<td>8482.7</td>
<td>34.3</td>
</tr>
<tr>
<td>Net Expenditure</td>
<td>-18703.8</td>
<td>8631.8</td>
<td>-46.1</td>
</tr>
<tr>
<td>Single Men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Revenue</td>
<td>11682.0</td>
<td>571.3</td>
<td>4.9</td>
</tr>
<tr>
<td>Total Expenditure</td>
<td>7300.0</td>
<td>1761.3</td>
<td>24.1</td>
</tr>
<tr>
<td>Net Expenditure</td>
<td>-4382.0</td>
<td>1190.0</td>
<td>-27.2</td>
</tr>
<tr>
<td>Single Women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Revenue</td>
<td>7884.9</td>
<td>350.4</td>
<td>4.4</td>
</tr>
<tr>
<td>Total Expenditure</td>
<td>11592.2</td>
<td>1648.9</td>
<td>14.2</td>
</tr>
<tr>
<td>Net Expenditure</td>
<td>3707.3</td>
<td>1298.5</td>
<td>35.0</td>
</tr>
<tr>
<td>Sole Parents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Revenue</td>
<td>1712.2</td>
<td>182.4</td>
<td>10.7</td>
</tr>
<tr>
<td>Total Expenditure</td>
<td>6383.5</td>
<td>222.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Net Expenditure</td>
<td>4671.3</td>
<td>40.0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

\(^{24}\) MITTS actually provides a detailed decomposition of the changes, for the various taxes, rebates and benefit types.
Further Examples
An extreme example of cutting all payments for sole parents was studied by Creedy, Kalb and Scutella (2003). Naturally, this would have large effects on sole parents’ poverty levels. Even allowing for labour supply responses, the expected effect on poverty levels and the decrease in net income available to sole parent families remain severe. Although the results of simulating such an extreme policy change are not thought to be as reliable as the results for more subtle changes, this result indicates that the belief held by some commentators that social security payments stand in the way of families gaining independence from benefit payments is likely to be false.

The use of alternative units of analysis and adult equivalence scales, when examining poverty and inequality changes resulting from policy reforms, can be considered using MITTS. Creedy and Scutella (2004) examined the sensitivity of inequality and social welfare measures to the choice of the unit of analysis and equivalence scales. As part of this exercise, they simulated the effect of flattening the marginal tax rate structure for the whole population. Introducing a basic income (at around the current allowance and pension rates) and a flat tax rate of 54 per cent (which results in a roughly revenue-neutral change if no labour supply changes were to occur), they found that inequality is reduced unequivocally for all choices. However, the predicted effect for social welfare depends on the unit of analysis and the aversion to inequality. After accounting for labour supply changes, inequality is reduced by a larger value but social welfare is increased by a smaller amount, and actually decreases for a wider range of parameter values. The lower increase in social welfare is due to the use of a welfare measure that takes only income into account and not the value of leisure or home-production time.

The implications of changes in the age distribution of the population were examined by Cai, Creedy and Kalb (2004), combining MITTS with alternative population projections by the Australian Bureau of Statistics (ABS). A ‘pure’ change in the age distribution was examined by keeping the aggregate population size fixed and only changing the relative frequencies in different age-gender groups. Not surprisingly, this example of an ageing population shows that the cost of social security is expected to increase and the revenue from income tax is expected to decrease. The effects of a policy change to benefit taper rates in Australia were compared using 2001 and 2050 population weights respectively. Assuming that labour force participation rates have not changed between 2001 and 2050, this shows that the cost of such a policy is expected to cost slightly less in absolute terms and considerably less in relative terms (as a proportion of the expenditure before the policy change) for the 2050 population. The larger proportion of the population out of the labour force means that fewer people benefit from the taper rate reduction. As a result, a taper rate reduction is expected to be less costly in the older population.

25 The units include individuals, households and ‘equivalent adults’.
26 This is also discussed briefly in section 6 (pp. 96-97).
MITTS has also been used to examine the effect of a lack of change, that is, the absence of a correction mechanism for inflation to update the income tax thresholds between July 2000 and March 2004. Buddelmeyer et al. (2004b) focussed on the extent of bracket creep since the introduction of the Australian New Tax System (ANTS) package and the distribution of effective marginal tax rates, respectively. It was estimated how much extra tax is paid per year due to bracket creep.

A range of possible tax-cut proposals was then examined, where the costs are roughly equal to the dollar amount of bracket creep. The labour supply responses are different for the different policies. Two out of eight reform proposals were compared in detail, one that only involves indexation of all tax thresholds with CPI increases and one that introduces an earned income tax credit for low-income households and indexes only the top two thresholds. The expected labour supply effects of the tax credit proposal were found to be nearly twice as large as for the other proposal. The resulting subsequent increase in tax revenues and reduction in benefit payments means that the long-run cost of the tax credit proposal falls considerably compared to the indexation proposal.

Actual and Proposed Policy Changes

One advantage of microsimulation is that it is straightforward to look at components of policy changes in isolation. Kalb, Kew and Scutella (2005) used MITTS to decompose the effect of the changes in July 2000. First the whole set of changes was studied and then some of its components were discussed separately. The change in income tax rates and thresholds were found to have the largest effect, because it affected a large proportion of the population, whereas the changes to the benefit system were only relevant to smaller groups. This tax change increased labour supply for all groups, in particular sole parents, making up part of the loss in tax revenue. Compared with the change in revenue resulting from the complete reform, the increase in expenditure on social security payments is small.

For families with children the changed structure and rates of family payments were also shown to be important. Other components of the reform provided several positive incentives for sole parents but the family payment reforms seemed to counteract this at least partly, resulting in a small positive overall effect. The analysis further showed that the reduction in pension taper rates had little effect on expenditure, given that a large proportion of pensioners do not work because of disability or retirement, and are not affected by a change in the taper rate. The reduction in the taper rate had a small positive labour supply effect for sole parents.

Looking at the combined effect of all changes, families with children experienced the largest increase in net government expenditure, mainly caused by increased family payments. Single person households had the lowest average increase in average income. Given the large effect of the income tax reform, it was also found that families in higher income deciles had larger average income gains.
Although expenditure on benefit payments increased following the reform of July 2000, this increase is lower after taking into account labour supply behaviour. For single men and women, the expectation is that the increase in expenditure may even turn into a saving on expenditure after the behavioural changes are taken into account. Similarly, the decrease in revenue is lower after taking into account the increased labour supply amongst all groups. Thus, the expected changes in labour supply should help to reduce the cost of the reform.

Some recent examples using MITTS to analyse the effect of proposed policy changes were reported by Buddelmeyer, Dawkins and Kalb (2004), who examined the changes announced by the Coalition in the 2004 Federal Budget. The Melbourne Institute’s 2004 Budget Report focused on the effects of the Family Tax Benefit package and the income tax cuts, the two central features of the budget. Labour supply and distributional effects were explored using MITTS. While all families with children benefited from the changes, the benefits tended to go mostly to individuals and families with high incomes.

Examining the labour supply effects of separate components, the effect of the increase in Family Tax Benefit Part A by $600 per child was estimated to reduce labour force participation by about 19,000 people, with the largest reduction being for sole parents, which is a high proportion of sole parents in work. This effect is almost exactly offset by a positive labour supply effect from reducing the withdrawal rate of Family Tax Benefit Part A.

The most surprising finding from the modelling is that changes to Family Tax Benefit Part B are expected to cause around 20,000 people to withdraw from the labour market. Those affected are partnered men and women. This is a result of the additional eligibility of non-working families with full Parenting Payments for Family Tax Benefit Part B. This raises net incomes at zero/low hours of work of the primary earner relative to net incomes at higher levels of labour supply. This seems to be an unintended consequence of this policy change, and its discovery through the analysis provides a further illustration of the advantages of behavioural microsimulation.

Modelling the effect of raising the top two income tax thresholds reveals that it raises labour supply by about the same amount as the Family Tax Benefit changes reduce labour supply. However, different workers are involved in these two effects. Finally, in this report alternative reforms were suggested and simulated, showing that better results with regard to work incentives could have been obtained at the same price as the policy changes in the Budget.

In a report on the Australian Labor Party’s Tax and Family Package, Buddelmeyer et al. (2004a) predicted the labour supply effects associated with some of the policy changes announced in the package and calculated the effect of these labour supply changes on the budgetary cost of the proposed policy. The package analysed has four components. These are the consolidation of Family Tax Benefit Part A and Part B into one payment (and some changes to rates and tapers); a Single Income Tax Offset (which
provides a tax rebate for single-earner families; the Low and Middle Income Tax Offset, which provides a tax cut to tax payers with an income between $7382 and $56,160 per annum and incorporates the existing Low Income Tax Offset; and an increase in the top income tax threshold to $85,000.

A feature of the Buddelmeyer et al. report was the inclusion of a time path for the predicted employment changes using evidence from previous policy changes. Due to labour market frictions and displacement effects, not all the labour supply effects estimated in MITTS may be converted into an actual increase in employment and thus into the predicted budget savings resulting from these responses. However, for those for whom the increase in labour supply is converted into employment, entering or re-entering employment may result in increased wages over time, further increasing income taxes paid by these employees and lowering government benefits received by them, thus increasing the budget savings above the amount estimated by the MITTS model, which does not account for such wage progression. The report presented evidence that the employment effect can be expected to take about four years to be realised, with the biggest incremental effect in the second year. The results are calculated using different scenarios. The central estimate of the time path of the employment effect, taking into account labour market frictions and displacement effects, and the time lags involved, assumes that 85 per cent of the projected increase in labour supply is converted into increased employment.

6. Modelling Developments
In addition to the fundamental need to model the labour supply of each individual in the dataset, a behavioural tax microsimulation model provides significant analytical challenges, particularly concerning methods of evaluating tax reforms using the discrete hours framework. This section describes recent and potential enhancements to the basic form of MITTS. The first subsection is concerned with recent innovations concerning distributional analyses, reweighting and the production of confidence intervals, while the second subsection briefly describes additions presenting challenges for the future.

Recent Enhancements

Distributional Measures
The use of a discrete hours framework, which generates a frequency distribution of income for each individual after a tax change conditional on being at the observed hours in the base, immediately presents a problem for distributional analyses. For example, suppose there are \(n \) individuals and \(k \) discrete hours levels. This results in \(k^n \) possible combinations of labour supply, and thus income distributions. Each outcome results in a different value for poverty and inequality measures. In principle, inequality or poverty measures could be calculated as weighted averages of the measures over all possible outcomes, with weights equal to the probabilities of each distribution arising. However, for any realistic sample size, even for few

27 In addition, any large-scale model requires constant maintenance involving, for example, re-estimation of econometric relationships as new data and methods are available, or the introduction of new ways to make simulations more efficient. Furthermore, enhancements such as the extension of ‘front end’ and ‘back end’ facilities are needed.
discrete labour supply points, the large number of possible combinations makes this computationally impractical.

To overcome this problem, Creedy, Kalb and Scutella (2004) considered a range of alternative approaches. One involves a sampling approach whereby a large number of possible income distributions are obtained by taking random draws from each individual’s hours distribution. With a sufficiently large number of randomly selected samples, the proportion of each combination of individuals’ labour supply replicates the precise probabilities, so a simple average of inequality measures over the draws could be used. This approach still requires a large computational effort, depending on the number of draws needed to obtain a good approximation. Another alternative is to use the average value of income for each individual. The final alternative method uses all outcomes for every individual (that is, the combination of hours level and associated income) as if they were separate observations. The outcomes are weighted by the individual probabilities of labour supply to produce a pseudo distribution.

Monte Carlo simulation methods were used to examine the relative performance of these alternative approaches. To ensure that the simulations were based on realistic distributions, a base sample of 10,293 individuals was produced using MITTS, and generated from the 1996/97 and 1997/98 SIHCs. A sample of single persons was selected to avoid the additional run time that would be introduced by examining the hours distribution of couples jointly, thus keeping the number of hours points to a minimum for the experiment. The sample provides, for each individual, the incomes and probabilities associated with \(k = 11 \) discrete hours levels ranging from 0 to 50 hours in five-hourly bands. An example of an hours distribution is shown in Figure 1.

Figure 1 An Example of an Hours Distribution

28 Each choice of discrete hours is drawn with the probability of it occurring for the relevant individual.

29 However, extension of the method to apply to couples is straightforward and involves only an increase in the number of possible combinations.
In the experiment, 1000 subsamples of size n were drawn from the base sample. Gini, G and Atkinson inequality measures, A (with relative inequality aversion set to 0.4) were computed along with the variance, V. In addition, three poverty measures were computed from the Foster, Greer and Thorbecke (1984) family. The measures chosen are the headcount measure, P_0, a measure that depends on the extent to which individuals fall below the poverty line, P_1; and finally a measure that also depends on the coefficient of variation of incomes of those in poverty, P_2. The poverty line was set in relative terms at half the median income; hence the poverty line varies across samples.

Consider first the behaviour of the method of sampling from the set of possible alternative distributions. Although the number of possible distributions is huge (even for a relatively small sample size of 50 with 11 hours levels there are 11^{50} possible combinations), it was found that the values for the inequality measures and the values for mean income stabilised by 50,000 draws. The associated stable values were regarded as the ‘true’ values against which the performance of the alternative approaches may be gauged.

Table 5 presents Monte Carlo results for the three approaches comparing deviations of the various approaches from the ‘true’ values for 1000 replications of the experiments, for sample sizes of $n = 500$. To explore the quality of the sampling approach when few draws are used, results are also produced for the sampling approach with 10 draws, a number which would be feasible in practice and represents a computational load that is comparable with the pseudo-distribution approach.

It is clear that the pseudo method performs much better than the expected income method. The sampling method, using 10 draws, ranks in between the two other methods. The pseudo method clearly outperforms the sampling method with 10 draws except for the case of the headcount measure P_0. Nevertheless, on many occasions the accuracy of the sampling method using only 10 draws would be considered sufficient.

It was found that as the sample size is increased, the methods tend to perform better with the exception of the variance and inequality measures for the expected income method. Using the latter method, the mean distance from the true value does not change with sample size for G, A, P_0 and V whereas for P_0 it falls and for P_1 it increases. Although the minimum and maximum values move towards each other in the expected income method, a bias remains. In the pseudo method and the sampling method with 10

30 Convergence takes place more quickly for larger samples. However in many instances, the difference between the ‘true’ measure or mean and the measure or mean found through the sampling approach is already small using many fewer draws even for the smaller sample sizes.

31 The experiment where a sample of 500 individuals is used took roughly four days to run. This involved drawing around 50,000,000 times (which is less than 10^8) from the 500 hours distributions and computing averages across the 50,000 draws in each of the 1000 replications. The exact measure for the same sample would involve 11^{500} different combinations which compared to the above drawing of 50,000 would require an enormous amount of time and be infeasible to carry out.
draws, the minimum and maximum value both move towards the true value. The pseudo method improves faster with sample size than the sampling method with 10 draws.

Table 5 Distribution of Differences from ‘True Value’: n=500

<table>
<thead>
<tr>
<th>G</th>
<th>A</th>
<th>P₀</th>
<th>P₁</th>
<th>P₂</th>
<th>X</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.340422</td>
<td>0.086779</td>
<td>0.115116</td>
<td>0.063697</td>
<td>0.048700</td>
<td>317.89</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use of each individual’s expected income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>mse¹</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use of pseudo distribution of income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>mse¹</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Use of 10 random draws from possible distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>mse¹</td>
</tr>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Max</td>
</tr>
</tbody>
</table>

Note a: mse stands for the mean squared error.

b: by definition, the mean for the expected income and pseudo distribution approaches is equal to the true mean value.

Another issue concerning the computation of distributional measures is that they are designed for homogeneous populations, whereas an advantage of a tax microsimulation model is its ability to deal with population heterogeneity. In making decisions about the two fundamental concepts of income and the unit of analysis, the difficulty is, as Ebert (1997, p.235) put it, that ‘an (artificial) income distribution for a fictitious population has to be constructed’. The first stage, involving the artificial income concept, is to convert total household income into a measure of the ‘living standard’ of each household member by dividing income by the adult equivalent household size. ³² Then a decision must be made regarding the income unit – involving a choice between individuals or ‘equivalent adults’. The choice essentially determines the weight given to the living standard in computing inequality measures. It is important that MITTS users can apply both approaches and a range of equivalence scales to explore the sensitivity of outcomes to these choices. Extensive comparisons of results using different units and alternative equivalence scales were made by Creedy and Scutella (2004).

Confidence Intervals

Microsimulation models typically provide no information about the sampling distribution of labour supply or expenditure changes. However, ³² A wide range of scales is available in MITTS. The use of income per adult equivalent as a measure of ‘living standard’ is of course subject to much debate, but is widely used. Shorrocks (1997) suggested that if concern is with equity, the use of adult equivalents is recommended, whereas if concern is primarily with social welfare, the individual should be the basic income unit.
such information would be of interest to those involved in designing policy reforms with specific objectives and a government budget constraint in mind.

Uncertainty regarding a model’s projections can arise for a variety of reasons. These include, for example, the fact that estimates of wage rates are used (particularly for non-workers in the dataset where wages are obtained from estimated wage functions), and preference parameters are estimated. In addition, sampling variations arise from the fact that the database is a sample of the population and household weights must be used for aggregation purposes. Kalb and Kew (2004) and Creedy, Kalb and Kew (2004) investigated methods of obtaining confidence intervals where the appropriate distribution of values arises from the sampling distribution of parameter estimates of preference functions.

A direct approach is to take repeated samples from the multivariate distribution of parameter estimates of the utility function, and for each replication carry out a tax reform evaluation (involving re-calibration for each individual). The results can be used to assemble a sampling distribution of aggregate results, such as expenditure totals. Unfortunately, this approach is impractical in many cases because of the extensive computing time required. However, using the typical shape of the sampling distributions, Creedy, Kalb and Kew (2004) found that a small number of replications may be used to estimate the mean and variance. Assuming a normal distribution, percentiles from the resulting distribution can be used to construct confidence intervals.

Examples of confidence intervals computed in this way are given in figure 2. These show, for couples, the 90 per cent confidence intervals for total revenue and expenditure as the sample size N (used to obtain the parameters of the associated Normal distribution) is increased. The solid line in each case gives the confidence interval obtained using a sample of 1000 replications. It can be seen that the assumption of a Normal distribution provides a good approximation of the confidence interval, from about 50 replications onwards, with a considerable saving of time. Furthermore, it is shown that the additional uncertainty arising from the econometric estimation of preference functions is relatively small.

Figure 2 Confidence Intervals For Couples
Reweighting the SIHC

Section 5 (p. 88) discussed the use of MITTS to examine the potential effects of population ageing. This essentially required the reweighting of the SIHC, that is the production of a new set of grossing-up weights such that a specified set of population aggregates (in this case the number of individuals in various age groups) are equal to specified totals that are obtained from extraneous sources (such as ABS population projections). It is suggested that this kind of reweighting approach provides scope for providing insights into the implications of changes to the population composition, indicating likely pressures for policy changes. However, this kind of reweighting is often required in more straightforward situations as well; for example, it is not obvious that the sample weights provided with the SIHC result in the best match of MITTS totals to a range of expenditure and tax aggregates (obtained, say, from administrative records). One situation where reweighting may be valuable is where it is required to carry out a policy analysis using a dataset that is several years old, and for which the sample weights provided may have become outdated.33

A facility to produce revised weights using a calibration approach is available for use with MITTS.34 For each individual in a sample survey, information is available about a selected range of variables; most of these are likely to be either 0 or 1, as they relate to whether or not the individual is in, for example, a particular age or employment group. Thus the sample design weights, provided by the statistical agency responsible for data collection, can be used to produce estimated population totals based on the sample survey.

The calibration approach can be stated as follows.35 Suppose that other data sources, for example census or social security administrative data, provide information about ‘true’ population totals. The problem is to compute new weights, which are as close as possible to the design weights, while ensuring that the population aggregates equal the values from the extraneous data source for each variable. In judging the closeness of the design and revised weights, a ‘distance function’ must be specified. The problem of computing new weights is thus a constrained optimisation problem, which can be solved using an iterative procedure that rapidly converges on the solution from an arbitrary set of starting values. The reweighting program associated with MITTS allows a choice of several distance functions.

33 In addition, MITTS updates all financial information to the relevant year. To update incomes, the Consumer Price Index is used, and to update wage rates, the average male and female wage index is used. However, if the tax and social security system is substantially different in the year for which the data are obtained and the year for which a change needs to be simulated, the different incentives in the two years might well have caused labour supply changes. To take this possibility into account, MITTS can also update labour supply in the base data set if required; see for example Kalb, Kew and Scutella (2005). Alternatively, two simulations could be run instead of one simulation to compare the pre-reform and post-reform systems via a common third system, which is to be used as the base system in both simulation runs. This third system has to be the system in place at the time the data were obtained; see for example, Buddelmeyer et al. (2004a, 2004b) and Buddelmeyer, Dawkins and Kalb (2004).

34 The term ‘calibration’ is of course used in a different sense in which it was used to describe the simulation procedure in section 3.

35 For technical details, see Cai, Creedy and Kalb (2004).
Cai, Creedy and Kalb (2004) used reweighting to examine the potential effects of population ageing. Projected population distributions by age and gender, using the Series B population projection as published in ABS (2003), were used to reweight the population in the 2000/01 SIHC. The aim was to make the demographic composition similar to the projection. However, to avoid the effects of changes in population size, it was assumed that the total population size does not change; only the proportion in each subgroup was used. The proportion of older persons is expected to increase relative to the younger age groups.

Figure 3 presents the new weights resulting from this procedure relative to the ABS weights, using the ABS projections for 2025. In obtaining these weights, the distance function imposed a maximum range of new to old weights of [0.56, 2.1]; this was found to be the smallest range for which convergence could be obtained using the nonlinear method. The effect on the wage and salary income distribution of the new weights is illustrated by Figure 4. There is little change in the proportion of persons on very high wages, but the proportion on medium wage and salary incomes has decreased. Instead a larger proportion of people have no wage and salary income. This is as expected after an increase in the proportion of people over 60 and in particular the sharp increase of the proportion over 75.

Figure 3 ABS Weights and New Weights for Projected Population Structure of 2025 (sorted by ABS Weights)

Figure 4 Difference of Frequency Distribution of Weekly Wage and Salary Income Using ABS Weights Versus New Weights for Projected Population Structure of 2025
Further Extensions

Welfare Measurement
Measures of inequality and their associated social welfare functions calculated by MITTS are based on some measure of income (using adult equivalence scales and alternative income units, as discussed above). In a behavioural model, it might be suggested that allowance should be made for changes in individuals’ leisure as a result of a tax change. This suggests the use of a ‘money metric welfare measure’ rather than simply an income measure. Similarly, it would be useful to be able to compute standard measures of welfare change and marginal excess burdens for selected individual and household types (involving equivalent and compensating variations).

However, the computation of such measures in the context of income taxes and transfers is highly complex as a result of the nonlinearity of budget constraints and the role of corner solutions. In a discrete hours model, every position is effectively a corner solution. These problems were examined in detail in Creedy and Kalb (2005b), who suggested an algorithm for computing exact welfare changes. The application of the method to MITTS is not straightforward, but it is planned to implement this in the near future.

Benefit Take-Up and Involuntary Unemployment
The MITTS model evaluates taxes and benefits for each individual using the detailed information provided by the SIHC, assuming that all benefits to which the individual is eligible are claimed (and no benefits are obtained to which the individual is not entitled). Ideally, it would be useful to model take-up rates for each of the types of benefit at the same time as labour supply behaviour is modelled. Take-up rates may depend on the level of the benefit for which the individual is eligible, along with the income level and demographic structure of the household. This is considerably complicated by the fact that take-up rates are in general expected to depend on the levels and conditions applying to benefits. The current version allows for a very simple adjustment to take-up rates, whereby benefits below a small specified amount are not claimed.

The current version of MITTS does not allow for involuntary unemployment. All non-working individuals are assumed to be unemployed by choice (that is, to be out of the labour force), without this affecting benefit entitlements. Therefore another important potential extension of the labour supply model, which is also expected to facilitate the modelling of (desired) benefit take-up, would be to allow for involuntary unemployment, decomposing actual labour supply into desired labour supply and the probability of employment. Further work is planned on these aspects of MITTS.

Policy Objectives
In practical tax policy design, there are always particular constraints and objectives. For example, an aim may be a desire to stimulate greater labour market participation by a particular demographic group, or to raise the net
income levels of certain groups, or reduce overall inequality. Constraints may involve government expenditure, or a desire of governments to retain some features of an income tax schedule, such as top marginal rates or the existence of a tax-free threshold. It would therefore be useful to introduce into behavioural models the facility for users to produce policy changes that are, for example, revenue neutral. This would require iterative search methods in which certain tax parameters (chosen by the user) are automatically adjusted in response to some specified policy change. This represents another challenge for the future.

7. Wider Modelling Developments
Extensive work is needed to deal with general equilibrium adjustments and dynamic aspects of tax reform. This section provides a tentative discussion on the development of new models that could potentially interact with MITTS. The first subsection discusses general equilibrium issues and the second subsection examines the issue of dynamics.

General Equilibrium Adjustments
The emphasis on population heterogeneity has meant that the large-scale tax microsimulation models are partial equilibrium in nature. They focus on the commodity demands, labour supplies and incomes of individuals and households, along with the associated taxes and transfer payments. Insofar as they deal with consumption, they only deal with the demand side, and insofar as they deal with labour supplies, they only handle the supply side of the labour market. In practice, particularly for large tax changes, the resulting reallocation of resources may be expected to give rise to changes in factor prices. It has so far not been possible to construct general equilibrium models having extensive household components, though experiments have been made involving linkages between different types of model.

This aspect of partial equilibrium models should always be kept in mind when considering simulation results. They describe what, under specified situations, may happen to only one side of the relevant market; they cannot produce a new equilibrium resulting from economy-wide adjustments. The following two subsubsections suggest more formal procedures to incorporate general equilibrium adjustments into the predicted outcomes.

‘Third Round’ Effects of Tax Changes
In modelling terms there appears to be a dichotomy between large-scale tax microsimulation models and computable general equilibrium models. The former are partial equilibrium models, which replicate actual population heterogeneity and complex tax structures, while the latter typically have extremely simple tax structures and are based on a representative household.

In practice, the resulting reallocation of resources may be expected to give rise to changes in factor prices following a large tax structure change. This aspect of microsimulation models should be kept in mind; they describe what, under specified situations, may happen to the supply side of the
labour market. It is useful to think in terms of the ‘first round’ effects of a tax reform, which arise in an arithmetic model in which labour supplies are fixed. The ‘second round’ effects, produced by a behavioural model, allow for labour supply responses, with wage rates held constant. The challenge is to take behavioural microsimulation analysis one step further, by modelling possible effects of a tax policy reform on wages.

Given a method of producing changes to the wage rate distribution arising from labour market effects, such changes could be fed back into the behavioural microsimulation model in order to obtain adjusted labour supply responses and government expenditure estimates: this gives what may be called the ‘third round’ effects. Creedy and Duncan (2001) explored the use of a multi-stage procedure in which the simulated labour supply effects of a policy change are aggregated and combined with extraneous information about the demand side of the labour market. Their approach involves the concept of a ‘supply response schedule’. This is a numerical construction, based on simulated labour supply responses to wage changes, conditional on a given tax and transfer structure.

MITTS is used to obtain individuals’ hours responses to a proportionate change in all observed wage rates. That is, the full wage distribution is perturbed, and the aggregate labour supply response to that perturbation is obtained. The advantage of this type of supply response schedule is that each point on the schedule is consistent with a distribution of wages, together with the underlying tax and transfer scheme and population characteristics. Movement along the supply response schedule arises from a shift in the entire wage distribution. While Creedy and Duncan demonstrated the potential usefulness of this extension, its practical application requires substantial disaggregated information about demand conditions. One extreme, in which wages must fully adjust to an unchanged demand for labour, provides a useful contrast to the opposite extreme, currently implied by MITTS, of no adjustment, and it can be modelled using the supply response schedule. This appears to be an area where links, rather than full integration, between general equilibrium models and behavioural microsimulation models could be exploited, and is therefore discussed in the following subsubsection.

Potential Links between Microsimulation and a CGE Model
Microsimulation and computable general equilibrium (CGE) models have been designed with quite different objectives in mind. For example, CGE models have concentrated on the analysis of inter-industry relations and factor prices, where heterogeneity on the household side has not been a priority. On the other hand, microsimulation models like MITTS, being based on a cross-sectional household survey dataset, concentrate on being able to model the details of direct taxes and transfers while capturing population heterogeneity, and emphasise labour supply and income distribution in the context of fixed wage rates. The possibility for linking arises from differences between models in what is taken as being endogenous in one model and exogenous in the other model.
A crude schedule indicating potential links between the two types of model is provided by the diagram in figure 5. The MITTS model is characterised as having endogenous labour supply behaviour with fixed wage rates, while the CGE model is described as having endogenous factor prices with fixed labour supply. The diagram shows two ‘linking modules’ – one for each direction of movement. The idea is that the modules are designed such that minimum modifications need to be made to existing models. For example, these may involve writing information to a data file used by one or other of the linking modules, and reading information produced by a linking module. However, these ‘minimum’ modifications are not necessarily trivial.

The modules shown in the diagram must handle substantially different levels of disaggregation, as information cannot be directly transferred between models. For example, the CGE model may provide information about wage rates (or changes in wages as a result of a policy or other change) for a variety of industry/occupation groups, while MITTS has a separate wage rate for every individual (including those observed not to be working at the time of the survey). Individuals need to be associated with the appropriate industry/occupation characteristics so that their wage rates can be altered according to the information from the CGE model. Similarly, individual labour supply distributions (over discrete hours levels) coming from the MITTS model need to be converted into information which can be used by the CGE model.

Figure 5 Potential Linkages Between MITTS and a CGE Model

Consider a change in the direct tax and transfer structure, where initially MITTS is used to evaluate the partial equilibrium effects of the reform. A multi-stage approach feeding labour supply changes into the CGE model and consequent wage changes in MITTS may be described as follows:
1. MITTS is used to provide new labour supplies, for given wage rates, for each individual. This information on labour supplies is converted into a set of average percentage changes in labour supply, for specified groups (say defined by industry).

2. This information is then fed into the CGE model and this produces, for each specified group (say defined by industry), percentage changes in wage rates. These can be used to convert wage rates of each individual in MITTS to new absolute levels.

3. Then re-run MITTS with the new tax structure and wage levels. It is not necessarily the case that this will produce labour supplies that are consistent with the labour supplies that were fed into the CGE model in the preceding step. Hence in this process, it is necessary to check if the new labour supplies match those produced under the previous step. If not, rerun the CGE model, to obtain a set of new wage rate changes.

4. Re-run MITTS and check again for changes in labour supplies. Continue iterating until stability is reached. Given the heterogeneity involved, some simplified rule for convergence will be needed – rather than achieving convergence for every single individual in MITTS. Possible approaches are to check for convergence of aggregate labour supply or minimise a sum of squared changes in labour supply between the current and the previous iteration.

This approach should enrich both types of models. The results in MITTS after convergence have taken into account the general equilibrium effect on wage changes due to the labour supply changes, while the results in the CGE model provide the effect of an income tax or social security change on the wider economy, whilst accounting for responses from the household side of the economy.

Alternative General Equilibrium Extensions
Another area of potential extensions involves complementing the microeconomic approach of MITTS with analyses from recently developed macroeconomic models in which households have differing employment histories, levels of wealth, education, access to credit, or in general exhibit realistic degrees of heterogeneity. It is anticipated that interaction between MITTS and this class of macroeconomic models will be two-way: MITTS can provide guidance on the appropriate methods of calibrating existing models to be representative of Australian households, while the macroeconomic models can be used to provide a broader context in which to view the results of MITTS.

Of particular interest are dynamic, stochastic general equilibrium (DSGE) macroeconomic models, which incorporate heterogeneity among consumers. These models have not been as widely used as the benchmark ‘representative agent’ DSGE models, but are growing in popularity. A key feature of heterogeneous agent models, which makes them particularly
attractive for use in this research, is that they generate equilibrium outcomes with non-trivial distributions of income, wealth, hours worked, and other variables of interest.

Early versions of heterogeneous agent models focused on environments in which consumers could not perfectly insure themselves against all idiosyncratic risk, because of liquidity constraints, incomplete markets, or other features. Examples include Imrohoroglu (1989, 1990), Hansen and Imrohoroglu (1992), and Aiyagari (1994); an overview of these models is in Rios-Rull (1995). More recently, models have been developed that incorporate a much richer degree of heterogeneity among households. Imrohoroglu, Imrohoroglu and Joines (1999a, b) present a model with overlapping generations of people who face both mortality risk and individual income risk. These agents also differ in their employment status and asset holdings. The authors use this model to examine the implications of an unfunded social security system and the optimal replacement ratio. Gourinchas and Parker (2002) analyse consumption decisions over consumers’ life cycles in a model that features heterogeneity in occupation and education as well as income. Regalia and Rios-Rull (2001) construct a model with both male and female agents, who make decisions about marriage and childbearing and invest in their children’s human capital. They find that this model accounts very well for observed increases in the number of both single women and single mothers in the United States.

Using heterogeneous agent DSGE models in conjunction with MITTS has several attractions. First, MITTS is calibrated to the Australian economy (with respect to wage and income distributions, for example), and so could provide guidance in how best to modify existing DSGE models in order to examine issues specific to Australia. Second, the general equilibrium nature of heterogeneous agent DSGE models may provide useful guidance on how best to incorporate dynamic features into MITTS. Third, heterogeneous agent DSGE models allow for more sources of uncertainty than does MITTS. For example, macro models could be used to incorporate business cycle shocks, monetary policy and productivity shocks into MITTS-based analyses.

Life Cycle Dynamics and Population Dynamics

The Need for Dynamic Models

Both the behavioural and arithmetic components of MITTS are concerned with a cross section of individuals at a single point in time and behaviour is based on estimated utility functions that are defined in terms of current (single-period) levels of net income and leisure. This places an obvious restriction on the nature, or interpretation, of the types of counterfactual examined. MITTS-B provides the probabilities that individuals work a range of alternative hours levels, under the assumption that only net incomes at those hours are different from the net incomes in the sample period. Behaviour may in practice change because people get older or they anticipate future tax changes, perhaps as a result of government responses to expected population ageing.
This means that MITTS does not look at changes over the lifetime of individuals or at the aggregate situation in future years. A number of features of the tax and transfer system are nevertheless designed specifically with a longer period perspective in mind, so that concern is not so much with income redistribution between individuals at one point in time but with redistribution over the lifetime. An obvious example relates to pension or superannuation schemes, but sickness and unemployment benefits, and many family-related transfer payments, are received by individuals at various stages of the life cycle rather than reflecting permanent features.

Longer period considerations are also relevant in designing policies to encourage labour force participation. For example, it is well known that mothers with young children reduce their hours of work or completely cease to participate in paid employment. To determine what influences this decision and investigate how it may be affected by tax policy, the impact of the current decision needs to be taken into account, not only on the current income level but also on future income levels. Individuals’ decisions are likely to be influenced by long-term plans as well as single-year impacts. Similarly, when studying retirement decisions, it is important to take into account the long-term nature of retirement planning. To study these issues, it is necessary to model individuals’ life cycles.

As indicated earlier, population changes over calendar time are also important, in addition to life cycle changes, which take place, for a variety of cohorts in a population, over the same time period. Changes in population structure can be projected under particular assumptions regarding fertility, death and migration rates. Such projections can be used in conjunction with microsimulation models to provide a limited number of counterfactual analyses.36

Potential Approaches

The construction of life-cycle models is obviously much more demanding than that of cross-sectional models, in terms of conceptual, computational and data demands. It is therefore not surprising that earlier life-cycle tax models tended to concentrate on specific issues such as superannuation, using a single cohort and little heterogeneity in terms of household structures.37 However, developments in computing facilities, data availability and an increased willingness to fund the teamwork necessary for the production and maintenance of large scale models has led to recent fruitful developments in dynamic simulation modelling.38 There is therefore scope for combining some of the benefits of dynamic models with the advantages of a microsimulation model such as MITTS.

36 The use by Cai, Creedy and Kalb (2004) of ABS projections of the Australian age distribution in 2050, to simulate the effect on expenditures and revenues under the assumption that the tax and social security system remains unchanged, is discussed briefly in section 5 (p. 88).
37 Australian examples are the cohort model of the complex superannuation and age pension scheme in Atkinson, Creedy and Knox (1996) and the analysis of indirect taxes and lifetime inequality in Cameron and Creedy (1995).
38 For a survey of a range of dynamic models, see O’Donoghue (2001).
Unlike cross-sectional tax microsimulation models, a dynamic model requires some kind of demographic component to deal with life-cycle events such as marriage, fertility, divorce, and deaths. The ability to model these features is needed even if they are not endogenised, that is, made to depend on incomes and relevant characteristics of the tax and transfer system. It may be possible to use such a demographic model to age a cross-sectional dataset artificially, using details of, for example, marriage and fertility patterns in relation to a range of individual characteristics (in addition to age). If all the relevant characteristics of a person at a future point in time (that is, at a future age) were predicted in this way, then the amount of social security benefits or tax given a particular tax and transfer system could be calculated using MITTS. This could perhaps be done for a sequence of years up to an individual's entire lifetime and for different tax and transfer systems.39

In this way, a person's lifetime income from different income sources could be projected under different tax and transfer systems. Similarly, the accumulation of net worth over a person's life cycle could be simulated, assuming a particular saving rate or profile of saving rates.40 Naturally, estimation of models regarding the decisions of individuals over the life cycle ideally requires longitudinal data over a long period of time. These are not available for Australia but even with relatively few 'waves' of survey data or using a pseudo cohort constructed built up from a sequence of cross-sectional surveys, models could be estimated for a prototype, which could be improved and extended in the future as more data become available.

The majority of dynamic models are discrete-time models given the large computational requirements of continuous time models. One type of modelling approach uses an annual transition matrix for the different lifetime transitions. Shortening the time period between transitions obviously increases the amount of information required and the time needed to calculate all variables in the model, and it is unlikely to provide significant benefits. It may be possible to combine this type of model with MITTS, particularly if the dynamic model produces data that are consistent with the form of input used within MITTS.

However, the use of transition matrices as the basic information on which life-cycle changes are generated makes it difficult to examine counterfactuals, given the large number of elements involved, which need to be changed. An alternative, more parsimonious, approach was adopted by Creedy and Van de Ven (1999, 2001), where functional relationships were estimated and the parameters had clear economic or demographic interpretations, so that counterfactuals could easily be specified. Simulated life-cycle changes were based on random drawings from the estimated distributions underlying the functional relationships. Nevertheless, this

39 The 'ageing' of the individuals in the dataset must necessarily relate to a specific calendar-time period, over which exogenous changes, not only in the tax structure but for example also in inflation, real wage growth and nominal interest rates, need to be made explicit.

40 This type of approach also requires explicit assumptions to be made regarding differences between cohorts as they age over the same calendar-time period. Such differences may be particularly important regarding fertility, for example.
approach was limited in the degree of heterogeneity modelled and, in addition, it did not model optimising behaviour (although a certain amount of endogeneity was in fact built into the simulations).

Allowing for optimising behaviour in dynamic models may perhaps more easily be incorporated if it is assumed that only past outcomes and the current time period’s set of outcomes are relevant for the different decisions to be made, and the order of decision making is known (whereby some types of decision take priority or must necessarily occur before others). Simple assumptions about expectations formation would be needed. More interesting but also more complicated and computationally demanding would be to allow for behavioural responses to policy changes, allowing a long-term view when households make a particular decision, for example, whether or not they want to be in paid employment. The complication arises from having to calculate the effect of taking each possible path at each decision moment. There are many possible paths with different outcomes; one of these has the highest utility and is expected to be chosen. Solving this type of model requires the optimisation of intertemporal equations at each point in time where a decision is made; see Sefton (2000) for further discussion of this problem.

8. Conclusions

Microsimulation models are useful in tax policy analysis and design as they are built to replicate closely the considerable degree of heterogeneity observed in the population, while still being able to produce aggregate population values. This paper has given an overview of behavioural tax microsimulation modelling in general, which takes individuals’ labour supply responses into account when analysing tax and transfer reforms, and the Melbourne Institute Tax and Transfer Simulator (MITTS) in particular. After illustrating the current uses of MITTS, the paper discussed several opportunities for further extensions. Many of the proposed extensions would require additional running time to carry out a simulation.

All models have their limitations and these must be recognised when producing policy simulations. Indeed, the use of formal models helps to make the assumptions explicit. Reminders must regularly be issued regarding the need to treat models as providing, at best, tentative guidance about the possible implications of tax changes in well-specified circumstances. In addition, it can be important to run several simulations based on different assumptions. This allows an examination of the sensitivity of outcomes to alternative assumptions.

An important component of every microsimulation model is the dataset on which it is based and which has been used to estimate behavioural relationships. It is particularly important that the data are up to date and that detailed information on income and hours of work are available.

Every tax policy change involves losers and gainers. Hence, distributional value judgements are unavoidable. It is argued here that the most useful role of models is in supporting rational policy analysis. By this is meant
the examination and reporting of the implications of alternative policies, so that policy-makers can form their own judgements. It also involves the determination of the appropriate policies that are implied by the adoption of a range of clearly specified value judgements.

As always, given that no model is without its limitations, it is necessary to treat the output from microsimulation models with caution. Nevertheless, given the importance of the issues examined, such models can provide a valuable element of policy analysis and can thereby help to provide a counterweight against the rhetoric and special pleading that otherwise play a major role in tax policy debates.

References

